JWST on the Road to L2

This timelapse gif tracks the James Webb Space Telescope as it streaks across the stars of Orion on its journey to a destination beyond the Moon. Recorded on December 28, 12 consecutive exposures each 10 minutes long were aligned and combined with a subsequent color image of the background stars to create the animation. About 2.5 days after its December 25 launch, JWST cruised past the altitude of the Moon’s orbit as it climbed up the gravity ridge from Earth to reach a halo orbit around L2, an Earth-Sun Lagrange point. Lagrange points are convenient locations in space where the combined gravitational attraction of one massive body (Earth) orbiting another massive body (Sun) is in balance with the centripetal force needed to move along with them. So much smaller masses, like spacecraft, will tend to stay there. One of 5 Lagrange points, L2 is about 1.5 million kilometers from Earth directly along the Earth-Sun line. JWST will arrive at L2 on January 23, 29 days after launch. While relaxing in Earth’s surface gravity you can follow the James Webb Space Telescope’s progress and complicated deployment online. via NASA https://ift.tt/3zdL9bl

The Further Tail of Comet Leonard

Comet Leonard, brightest comet of 2021, is at the lower left of these two panels captured on December 29 in dark Atacama desert skies. Heading for its perihelion on January 3 Comet Leonard’s visible tail has grown. Stacked exposures with a wide angle lens (also displayed in a reversed B/W scheme for contrast), trace the complicated ion tail for an amazing 60 degrees, with bright Jupiter shining near the horizon at lower right. Material vaporizing from Comet Leonard’s nucleus, a mass of dust, rock, and ices about 1 kilometer across, has produced the long tail of ionized gas fluorescing in the sunlight. Likely flares on the comet’s nucleus and buffeting by magnetic fields and the solar wind in recent weeks have resulted in the tail’s irregular pinched and twisted appearance. Still days from its closest approach to the Sun, Comet Leonard’s activity should continue. The comet is south of the Solar System’s ecliptic plane as it sweeps through the southern constellation Microscopium. via NASA https://ift.tt/3FV6GZf

Giant Storms and High Clouds on Jupiter

What and where are these large ovals? They are rotating storm clouds on Jupiter imaged last month by NASA’s Juno spacecraft. In general, higher clouds are lighter in color, and the lightest clouds visible are the relatively small clouds that dot the lower oval. At 50 kilometers across, however, even these light clouds are not small. They are so high up that they cast shadows on the swirling oval below. The featured image has been processed to enhance color and contrast. Large ovals are usually regions of high pressure that span over 1000 kilometers and can last for years. The largest oval on Jupiter is the Great Red Spot (not pictured), which has lasted for at least hundreds of years. Studying cloud dynamics on Jupiter with Juno images enables a better understanding of dangerous typhoons and hurricanes on Earth. via NASA https://ift.tt/3ezhb8d

Sun Halo over Sweden

What’s happened to the Sun? Sometimes it looks like the Sun is being viewed through a giant lens. In the featured video, however, there are actually millions of tiny lenses: ice crystals. Water may freeze in the atmosphere into small, flat, six-sided, ice crystals. As these crystals flutter to the ground, much time is spent with their faces flat and parallel to the ground. An observer may find themselves in the same plane as many of the falling ice crystals near sunrise or sunset. During this alignment, each crystal can act like a miniature lens, refracting sunlight into our view and creating phenomena like parhelia, the technical term for sundogs. The featured video was taken in late 2017 on the side of a ski hill at the Vemdalen Ski Resort in central Sweden. Visible in the center is the most direct image of the Sun, while two bright sundogs glow prominently from both the left and the right. Also visible is the bright 22 degree halo — as well as the rarer and much fainter 46 degree halo — also created by sunlight refracting through atmospheric ice crystals. via NASA https://ift.tt/3mBXRf7

Comet Leonard behind JWST Launch Plume

Which one of these two streaks is a comet? Although they both have comet-like features, the lower streak is the only real comet. This lower streak shows the coma and tail of Comet Leonard, a city-sized block of rocky ice that is passing through the inner Solar System as it continues its looping orbit around the Sun. Comet Leonard has recently passed its closest to both the Earth and Venus and will round the Sun next week. The comet, still visible to the unaided eye, has developed a long and changing tail in recent weeks. In contrast, the upper streak is the launch plume of the Ariane V rocket that lifted the James Webb Space Telescope (JWST) off the Earth two days ago. The featured single-exposure image was taken from Thailand, and the foreground spire is atop a pagoda in Doi Inthanon National Park. JWST, NASA’s largest and most powerful space telescope so far, will orbit the Sun near the Earth-Sun L2 point and is scheduled to start science observations in the summer of 2022. via NASA https://ift.tt/3EqfAMt